Разработан эффективный «оптимистичный» алгоритм для обучения с подкреплением

Международный коллектив ученых из России, Франции и Германии с участием исследователей факультета компьютерных наук, Центра искусственного интеллекта ВШЭ и Научно-исследовательского института искусственного интеллекта AIRI разработали новый алгоритм обучения с подкреплением (Bayes-UCBVI). Это первый байесовский алгоритм, который имеет математическое доказательство эффективности и успешно протестирован на практике в Atari-играх.

Ключевая особенность этого метода, в отличие от классического машинного обучения, — постоянное взаимодействие агента (алгоритма) со средой, от которой он получает обратную связь в виде поощрений и наказаний. Цель агента — максимизировать сумму наград, которые среда дает ему за «правильное» взаимодействие.

Агент должен не просто пытаться понять, какие действия правильные, базируясь на текущих представлениях о среде. Он также должен исследовать эту среду: искать новые возможности, чтобы получить еще большую награду.

Таким образом, появляется дилемма: исследование или использование известных данных.

Вопрос выбора между исследованием среды и использованием уже имеющихся знаний — один из главных для построения эффективных алгоритмов обучения с подкреплением. 

Принцип оптимизма приводит к тому, что агент выбирает какое-либо действие по одной из двух причин: либо он мало пробовал это делать, либо он достаточно точно уверен, что оно хорошее. Именно это обеспечивает исследование среды агентом.

Алгоритм, представленный учеными, позволил преодолеть пропасть между теорией и практикой. Использование этого алгоритма на практике позволит существенно ускорить процесс обучения искусственного интеллекта».